\(\int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx\) [202]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 192 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=-\frac {3 (A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(3 A-5 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}+\frac {3 (A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}-\frac {(3 A-5 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}+\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \]

[Out]

-1/3*(3*A-5*B)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d+(A-B)*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))+3*(A-B)*si
n(d*x+c)*sec(d*x+c)^(1/2)/a/d-3*(A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/
2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d-1/3*(3*A-5*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2
*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {4104, 3872, 3853, 3856, 2719, 2720} \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}-\frac {(3 A-5 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a d}+\frac {3 (A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d}-\frac {(3 A-5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}-\frac {3 (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

[In]

Int[(Sec[c + d*x]^(5/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

(-3*(A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - ((3*A - 5*B)*Sqrt[Cos[c +
 d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a*d) + (3*(A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*
d) - ((3*A - 5*B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a*d) + ((A - B)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a +
 a*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {\int \sec ^{\frac {3}{2}}(c+d x) \left (\frac {3}{2} a (A-B)-\frac {1}{2} a (3 A-5 B) \sec (c+d x)\right ) \, dx}{a^2} \\ & = \frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {(3 A-5 B) \int \sec ^{\frac {5}{2}}(c+d x) \, dx}{2 a}+\frac {(3 (A-B)) \int \sec ^{\frac {3}{2}}(c+d x) \, dx}{2 a} \\ & = \frac {3 (A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}-\frac {(3 A-5 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}+\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {(3 A-5 B) \int \sqrt {\sec (c+d x)} \, dx}{6 a}-\frac {(3 (A-B)) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a} \\ & = \frac {3 (A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}-\frac {(3 A-5 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}+\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {\left ((3 A-5 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a}-\frac {\left (3 (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a} \\ & = -\frac {3 (A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(3 A-5 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}+\frac {3 (A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}-\frac {(3 A-5 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}+\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.04 (sec) , antiderivative size = 372, normalized size of antiderivative = 1.94 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {e^{-\frac {1}{2} i (c+d x)} \cos \left (\frac {1}{2} (c+d x)\right ) \left (-\left ((3 A-5 B) \left (1+e^{i (c+d x)}+e^{2 i (c+d x)}+e^{3 i (c+d x)}\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )\right )+i \left (-3 A+5 B-6 A e^{i (c+d x)}+8 B e^{i (c+d x)}-12 A e^{2 i (c+d x)}+10 B e^{2 i (c+d x)}-6 A e^{3 i (c+d x)}+4 B e^{3 i (c+d x)}-9 A e^{4 i (c+d x)}+9 B e^{4 i (c+d x)}+3 (A-B) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \left (1+e^{i (c+d x)}+e^{2 i (c+d x)}+e^{3 i (c+d x)}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )\right ) \sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{3 a d \left (1+e^{2 i (c+d x)}\right ) (B+A \cos (c+d x)) (1+\sec (c+d x))} \]

[In]

Integrate[(Sec[c + d*x]^(5/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]*(-((3*A - 5*B)*(1 + E^(I*(c + d*x)) + E^((2*I)*(c + d*x)) + E^((3*I)*(c + d*x)))*Sqrt[Cos[c
+ d*x]]*EllipticF[(c + d*x)/2, 2]) + I*(-3*A + 5*B - 6*A*E^(I*(c + d*x)) + 8*B*E^(I*(c + d*x)) - 12*A*E^((2*I)
*(c + d*x)) + 10*B*E^((2*I)*(c + d*x)) - 6*A*E^((3*I)*(c + d*x)) + 4*B*E^((3*I)*(c + d*x)) - 9*A*E^((4*I)*(c +
 d*x)) + 9*B*E^((4*I)*(c + d*x)) + 3*(A - B)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*(1 + E^(I*(c + d*x)
) + E^((2*I)*(c + d*x)) + E^((3*I)*(c + d*x)))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))*Sqrt[S
ec[c + d*x]]*(A + B*Sec[c + d*x]))/(3*a*d*E^((I/2)*(c + d*x))*(1 + E^((2*I)*(c + d*x)))*(B + A*Cos[c + d*x])*(
1 + Sec[c + d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(465\) vs. \(2(226)=452\).

Time = 17.63 (sec) , antiderivative size = 466, normalized size of antiderivative = 2.43

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {\left (-A +B \right ) \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+2 B \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )+\frac {\left (2 A -2 B \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(466\)

[In]

int(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*((-A+B)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)+2*B*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x
+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A-2*B)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*
x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-
(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)))/sin(1/2*
d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.60 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {{\left (\sqrt {2} {\left (3 i \, A - 5 i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (3 i \, A - 5 i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-3 i \, A + 5 i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-3 i \, A + 5 i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 \, {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 \, {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (9 \, {\left (A - B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 2 \, B\right )} \cos \left (d x + c\right ) + 2 \, B\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \]

[In]

integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/6*((sqrt(2)*(3*I*A - 5*I*B)*cos(d*x + c)^2 + sqrt(2)*(3*I*A - 5*I*B)*cos(d*x + c))*weierstrassPInverse(-4, 0
, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(-3*I*A + 5*I*B)*cos(d*x + c)^2 + sqrt(2)*(-3*I*A + 5*I*B)*cos(d*x
 + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 9*(sqrt(2)*(I*A - I*B)*cos(d*x + c)^2 + sqr
t(2)*(I*A - I*B)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)
)) - 9*(sqrt(2)*(-I*A + I*B)*cos(d*x + c)^2 + sqrt(2)*(-I*A + I*B)*cos(d*x + c))*weierstrassZeta(-4, 0, weiers
trassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(9*(A - B)*cos(d*x + c)^2 + 2*(3*A - 2*B)*cos(d*x + c
) + 2*B)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^(5/2)/(a*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^(5/2)/(a*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + a/cos(c + d*x)),x)

[Out]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + a/cos(c + d*x)), x)